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Abstract 

Bayesian methods are becoming very popular despite some practical difficulties in 

implementation. To assist in the practical application of Bayesian methods, we show how 

to implement Bayesian analysis with WinBUGS as part of a standard set of SAS routines. 

This implementation procedure is first illustrated by fitting a multiple regression model 

and then a linear growth curve model. A third example is also provided to demonstrate 

how to iteratively run WinBUGS inside SAS for Monte Carlo simulation studies. The 

SAS codes used in the current study are easily extended to accommodate many other 

models with only slight modification. This interface can be of practical benefit in many 

aspects of Bayesian methods because it allows the SAS users to benefit from the 

implementation of Bayesian estimation and it also allows the WinBUGS user to benefit 

from the data processing routines available in SAS. 
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A SAS Interface for Bayesian Analysis with WinBUGS 

Bayesian methods have received more and more attention in social and behavioral 

researches (e.g., Myung & Pitt, 1997; Seltzer & Choi, 2003; Lee, 2004) and these models 

have been successfully applied to item response models (e.g., Chang, 1996; Fox & Glas, 

2001), factor analytic models (e.g., Bartholomew, 1981; Lee, 1981), structural equation 

models (e.g., Scheines, Hoijtink, & Boomsma, 1999; Congdon, 2003), genetic models 

(e.g., Eaves & Erkanli, 2003), growth curve models (e.g., Zhang, Hamagami, Wang, 

Grimm, & Nesselroade, 2007), and multilevel models (e.g., Seltzer, Wong, & Bryk, 

1996). In a recent debate by Trafimow (2003, 2005) and Lee & Wagenmakers (2005), the 

advantages and disadvantages of Bayesian methods were discussed and a promising 

future of Bayesian applications has been suggested. Based on the review of applications 

of Bayesian methods in social and behavioral research, Rupp, Dey, and Zumbo (2004) 

further concluded that both applied and theoretical communities could not afford to miss 

the opportunities opened up by Bayesian methods. 

A drawback to the implementation of Bayesian analysis and estimation is the 

programming and computation demands. However, with the development of the 

computation capacity, the cost of computation is acceptable given its benefits. 

Furthermore, the emergence of the free available WinBUGS software (Spiegelhalter, 

Thomas, Best, & Lunn, 2003) has made the programming much easier than before. 

WinBUGS is accepted as the most widely used and convenient tool for estimating both 

simple and complex Bayesian models (Congdon, 2001, 2003; Cowles, 2004).  

A complete WinBUGS program consists of three parts: (1) Model Specification, (2) 

Data Input, and (3) Starting Values. Users first need to learn how to specify a model in 
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WinBUGS syntax and these specifications vary across different models. In this paper, we 

will illustrate how to specify three models: a multiple regression model, a growth curve 

model, and a confirmatory factor model. Because the contributed WinBUGS example 

programs for many models are available freely on the WinBUGS development website, 

we focus on helping readers understand WinBUGS codes and customize the codes for 

their own empirical data analysis.  

The data format in the Data Input and Starting Values parts of WinBUGS is very 

similar to Splus / R data format (Spiegelhalter, Thomas, Best, & Lunn, 2003). 

Researchers who are not familiar to the Splus/R data format may find it difficult to 

transform data to be compatible with WinBUGS. Fortunately, there are some free 

programs or macros that can transform different formats of data to WinBUGS format, 

such as an R function R2WinBUGS by Sturtz and Ligges, a set of SAS macros by 

Sparapani, an excel macro xl2bugs by Misra, and a standalone program BAUW by Zhang 

and Wang (see Appendix A for Internet links).  

Although WinBUGS can be used as menu-driving software, we present a batch 

procedure to call and run WinBUGS inside a SAS script. This procedure has several 

advantages over other methods. First, it is easy to run WinBUGS for researchers who are 

already familiar with SAS. Second, it permits a researcher to use SAS procedures before 

and after Bayesian modeling. It is easy to describe and transform data first in SAS, run 

the WinBUGS program for Bayesian estimation, and then save and plot results using 

SAS procedures. Third, although WinBUGS provides a “menu” to run the program, the 

“batch” processing approach used here decreases the probability of mistakes and allows 

users to easily repeat similar analyses. This procedure is especially useful and convenient 
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for analysis requiring the repetition, such as in Monte Carlo simulation studies. This 

procedure is demonstrated in the following sections. 

A Complete Procedure to Run WinBUGS inside SAS 

To run WinBUGS inside SAS, the procedure portrayed in Figure 1 can be followed. 

In the following sections, we describe this procedure using three examples: (1) a multiple 

regression model, (2) a linear growth curve model, and (3) a confirmatory factor analysis 

model. The first example aims to demonstrate how to apply the whole procedure in 

Figure 1, including how to specify a model, transform data, create starting values, and run 

WinBUGS inside SAS to implement Bayesian analysis. The second example is based on 

the linear growth curve model (e.g., Meredith & Tisak, 1990; McArdle & Nesselroade, 

2003) and aims to illustrate how to specify a more complex model. The third example 

aims to show how to iteratively run WinBUGS inside SAS for the Monte Carlo 

simulation study.  

--------- Insert Figure 1 about here ---------------- 

Example 1. The Multiple Regression Model 

 For the purpose of demonstration, we use a multiple regression model with two 

predictors. The model can be written as 

y[i] = b0 + b1 * x1[i] + b2 * x2[i] + e[i], i=1, …, N. 

In its probability form, this model can be expressed as 

(1)           y[i] | x1[i], x2[i] ~ N(µ[i], σe
2) 

µ[i] = b0 + b1 * x1[i] + b2 * x2[i], 

where σe
2 is the residual or measurement error variance, b0 is the intercept, and b1 and b2 

are regression coefficients. A data set with the sample size N=1000 was generated from 
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this model with the population parameter values set as b0 = 1, b1 = 2, b2 = 3, and σe
2 = 4. 

The SAS codes for data generatation are given in CODE 1. The complete codes for 

running WinBUGS inside SAS to fit this multiple regression model are provided in 

CODE 2 through CODE 8.  

CODE 1.Data generatation 
DATA Sim_Reg; 
  b0=1; b1=2; b2=3; sig_e=2; seed=20060118; N = 100 0;  
  DO _N_ = 1 TO N; 
       x1=RANNOR(seed); 
  x2=RANNOR(seed); 
  e=RANNOR(seed); 
     y = b0+b1*x1+b2*x2+sig_e*e; 
   KEEP y x1 x2; 
   OUTPUT; 
   END; 
RUN; 
 
CODE 2.Model specification 
DATA model; 
INPUT model $80.; 
CARDS;/*start the model*/ 
model{ 
#Model specification 
   for (i in 1:N) { 
      y[i]~dnorm(muy[i], Inv_sig2_e) 
   muy[i]<-b0+b1*x1[i]+b2*x2[i] 
   } 
#priors 
   b0~dnorm(0, 1.0E-6) 
   b1~dnorm(0, 1.0E-6) 
   b2~dnorm(0, 1.0E-6) 
   Inv_sig2_e~dgamma(1.0E-3, 1.0E-3) 
#parameter transformation 
   Sig2_e<-1/Inv_sig2_e 
} 
; 
RUN; 
DATA _NULL_; 
  SET model; 
  FILE "C:\SASWinBUGS\RegModel.txt"; 
  PUT model; 
RUN; 
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CODE 3.Data transformation 
%_lexport(data=Sim_Reg, file='C:\SASWinBUGS\RegData .txt', 
var=y x1 x2); 
 
CODE 4.Starting values specification 
DATA _NULL_; 
FILE "C:\SASWinBUGS\RegInit.txt"; 
PUT "list(b0=0, b1=0, b2=0, Inv_sig2_e=1)"; 
RUN; 
 
CODE 5.Batch scripts to run WinBUGS 
DATA _NULL_; 
FILE "C:\program files\WinBUGS14\RegBatch.txt"; 
PUT // @@ 
#1 "display('log')" 
#2 "check('C:/SASWinBUGS/RegModel.txt')"  
#3 "data('C:/SASWinBUGS/RegData.txt')" 
#4 "compile(1)" 
#5 "inits(1, 'C:/SASWinBUGS/RegInit.txt')" 
#6 "gen.inits()" 
#7 "update(2000)" 
#8 "set(b0)" 
#9 "set(b1)" 
#10 "set(b2)" 
#11 "set(Sig2_e)" 
#12 "dic.set()" 
#13 "update(5000)" 
#14 "dic.stats()" 
#15 "coda(*,'C:/SASWinBUGS/output')" 
#16 "save('C:/SASWinBUGS/bugslog.txt')" 
#17 "quit()" 
; 
RUN; 
 
CODE 6.Run WinBUGS in SAS X window 
DATA _NULL_; 
FILE "C:\SASWinBUGS\runreg.bat"; 
PUT 'CD C:\program files\WinBUGS14'; 
PUT 'WinBUGS14.exe /PAR RegBatch.txt'; 
PUT 'EXIT'; 
RUN; 
 
DATA _NULL_; 
X "C:\SASWinBUGS\runreg.bat"; 
RUN; QUIT; 
 
CODE 7.View log file and DIC and debug errors 
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DATA log; 
INFILE "C:\SASWinBUGS\bugslog.txt" TRUNCOVER; 
INPUT log $80.; 
log=translate(log," ","09"x); 
RUN; 
 
PROC PRINT DATA=log; 
RUN; 
 
CODE 8.Statistical inference 
%coda2sas(out=coda, infile='C:\ 
SASWinBUGS\outputIndex.txt', 
chain='C:\SASWinBUGS\output1.txt', stats=1); 
QUIT; 
 

Step 1: Install SAS and WinBUGS 

The first step is to install SAS and WinBUGS. Since SAS is widely used, we assume 

that SAS has been installed and only focus on the installation of WinBUGS. WinBUGS is 

free software and can be downloaded from its website (Appendix A). The download is an 

executable file and it can be setup as a usual “double click and follow screen instructions” 

Windows program. WinBUGS requires a key for its unrestricted use. The key is sent by 

e-mail once the user completes a registration form on the WinBUGS website.  

Step 2: Setup SAS environment for WinBUGS 

A set of free SAS macros written by Sparapani (Appendix A) can be used to 

transform data from SAS data format to WinBUGS data format. The macros can be 

downloaded from their website (See Appendix A, #4). A slightly modified version was 

used in this article, which is also freely available (Appendix A, #7). The following 

instructions can be followed to setup the macros. 

1. Put the macros into a folder. To avoid unintentionally deleting these macros, we 

suggest putting the macros into the folder “C:\Program Files\SAS\bugs ”. 

“bugs ” is a new folder that needs to be created first.  
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2. Modify the SAS configuration file, sasv8.cfg for SAS 8.x or sasv9.cfg for SAS 9.x.  

Open the file in notepad and add the two lines below at the end and save it. 

   -insert sasautos 'C:\Program Files\SAS\bugs' 
   -insert sasautos '!SASROOT\core\sasmacro' 

Step 3: Express the model in WinBUGS language 

To implement Bayesian analysis in WinBUGS, we first need to express the models 

using WinBUGS syntax. For a typical WinBUGS program, the model specification part 

must include two sub-parts: the expression of the model and the choice of prior 

distributions (Spiegelhalter, Thomas, Best, & Lunn, 2003). For the regression model, the 

codes are given in CODE 2. 

All WinBUGS programs start with a keyword model  and the whole model 

specification part needs to be put within a pair of brackets { } . The first section of the 

model specification part can be viewed as the direct translation of the probability form of 

the model. For the regression model in Equation (2), WinBUGS codes for the ith 

individual were  

y[i] ~ dnorm(muy[i], Inv_sig2_e) , and 

muy[i] <- b0 + b1*x1[i] + b2*x2[i] . 

The first line indicates that y[i]  had (~) a normal distribution (dnorm ) with two 

arguments: mean muy[i]  and precision Inv_sig2_e . The precision in the second 

arguments is the reciprocal of the variance (1/σe
2). The mean was equal to (<- ) the 

combination of the two predictor x1  and x2  with the regression coefficients b1  and b2 . 

Because we had N=1000 individuals, we used a for (i in 1:N){…}  loop to repeat this 

specification for each individual. For  is the keyword for a loop. i in 1:N  in the 

parentheses means replacing i  using 1, 2, …, N  and then implement everything in the 
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brackets {}  following for (i in 1:N) . 

In the second section of the model specification part, we need to choose a prior 

distribution for each parameter in the model. For this regression model, there were 4 

parameters, b0 , b1 , b2 , and Inv_sig2_e . For the regression intercept and regression 

coefficients, the normal distribution priors with mean 0 and precision 1.0E-6 were 

specified as bk~dnorm(0, 1.0E-6)  with k=0,1,2 , which is a widely used 

non-informative prior (Congdon, 2001, 2003). For the precision parameter, a Gamma 

distribution (dgamma) prior with shape and scale parameter = 1.0E-3 was used 

Inv_sig2_e~dgamma(1.0E-3, 1.0E-3) , which is also a widely used 

non-informative prior for the variance parameter (Congdon, 2001, 2003). Finally, we 

transformed the precision back to the variance. 

By running the codes in CODE 2, the WinBUGS model specification codes for the 

multiple regression model were saved into a file called ‘RegModel.txt ’.  

Step 4: Configure a SAS program to run WinBUGS 

In this step, we configured a SAS program to create WinBUGS compatible data, 

construct a staring value file, run WinBUGS, and analyze the MCMC data generated by 

WinBUGS. The following 5 steps can be done in SAS. 

Step 4-1: Create a WinBUGS data file 

By using the SAS macros in Step 2, a SAS data set can be converted to the 

WinBUGS format. WinBUGS uses a keyword list(…)  to organize the data. The data 

in the parentheses can be a scalar, a vector, or an array. For a scalar, the format is 

ScalarName=data . For example, N=1000 and T=5. For a vector, the format is 

VectorName=c(data1, data2, …, dataN) . The keyword c  combines the values 
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separated by the comma in the parentheses into a vector. For example, Mu=c(0,0)  is a 

vector with 2 elements. For an array, the format is ArrayName=structure(.Data 

= c(data1, data2, … ), .Dim = c(nrow, ncol,…) ) . WinBUGS reads data 

in .Data = c(data1, data2, … )  into an array by filling the right-most index for 

dimensions in .Dim = c(nrow, ncol,…)  first. For example, for a two-dimension 

(3×2) array,  

y=structure(.Data=c(1,2,3,4,5,6), .Dim=c(3,2))=

1 2

3 4

5 6

 
 
 
 
 

.  

The SAS macros set up in Step 2 can convert SAS data into a list  with vector  

(_lexport ) or array  (_sexport ). Using the codes in CODE 3, a SAS data set was 

converted to WinBUGS vector data and saved into a file. In this example, the macro 

_lexport  was used.  data=  defines the SAS data set to be used. Here it was a SAS 

data set called Sim_Reg .  file= defines the file to save the data in WinBUGS data 

format.  var=  defines the variables to transform. In the generated data file, three 

vectors, y , x1 , and x2  along with a scalar representing the sample size (N=1000) were 

saved. 

Step 4-2: Create a starting value file 

For each parameter in the model, a starting value needs to be either specified 

manually or generated by WinBUGS. Usually, for each canonical parameter, we give it a 

starting value manually and let WinBUGS generate the others. The format of the starting 

values has the same format as the data. The same way to transform data can be used to 

create starting values. Usually, the starting values are relatively easier to handle and can 

be put together directly. The SAS codes in CODE 4 created a starting value file for the 
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regression model. All the staring values were put together in a list  and saved in the file 

“RegInit.txt ”.  

Step 4-3: Create a script file to run WinBUGS 

In this step, we used the batch mode to run WinBUGS. CODE 5 provides the SAS 

codes for the regression model. 

Line #1 opened a log window to trace the history and errors of the implementation 

process. Line #2 checked whether the syntax in the file ‘RegModel.txt ’ was correct. 

Line #3 read in the data, Line #4 compiled the model, Line #5 initialized the parameters 

using the data in the starting value file, and Line #6 generated the staring values for the 

parameters that were not specified in the starting value file. Line #7 generated 2000 data 

points for each parameter but these data points (called burn-in data points) were discarded 

to ensure convergence. In Lines #8–11 the parameters were specified to be estimated. The 

parameters need to be specified since the sampled data points for unspecified parameters 

will not be saved. Line #12 was used to monitor the DIC (Spiegelhalter et. al. 2002) that 

can be used as a fit statistic to compare models. Line #13 generated the other 5000 data 

points which were saved to be analyzed in SAS for statistical inference. Line #14 wrote 

the DIC into the log file. Line #15 saved the generated data points in Line #13 into two 

files. The first file was the index file ‘outputIndex.txt ’ that included the index for 

each estimated parameter defined in Lines #8-11. The second file was the data file 

‘output1.txt ’ that saved the data points generated. These files were also called 

CODA (Convergence Diagnostic and Output Analysis) files. Line #16 saved the log file 

where the DIC and error information can be found. Line #17 was used to quit the 

WinBUGS program when finished. 
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Three comments are worth emphasizing here. First, this script file must be saved 

where WinBUGS is installed, usually “C:\program files\WinBUGS14\ ”. Second, 

one can change the folder where the model file, data file, staring value file, coda file, and 

log file are saved. However, the slash “/ ” instead of the usual backslash “\ ” needs to be 

used in the path. Third, WinBUGS is sensitive to the lowercase and uppercase letters. 

Step 4-4: Run WinBUGS and debug errors 

To run WinBUGS, we first created a run.bat  file using the codes in the first 

paragraph of CODE 6. We then ran WinBUGS in the X window using the codes in the 

second paragraph. After implementing the first two paragraphs of the codes, a DOS 

window opened and the WinBUGS program implemented the procedure specified in Step 

4-3. After finished, the WinBUGS program exited and the SAS window returned. Then 

the first thing to check is the log file. The codes in CODE 7 can read the log file and print 

its content in the output window of SAS. Any errors in running WinBUGS can be 

targeted by the information provided in the log file. 

Step 4-5: Read CODA files into SAS and implement statistical inferences 

The CODA file generated by WinBUGS can be read into SAS using the macro 

coda2sas  with the codes in CODE 8. The first argument “out= ” specified the name of 

a SAS data set to save the generated data points. Here a data set called “coda ” was 

created. “infile= ” specified the index file and “chain= ” specified the data file saved 

in Step 4-3. By specifying “stats=1 ”, the macro coda2sas  generated the history plot 

and the histogram with the overlaid kernel density and calculated the descriptive statistics 

for each parameter. If more analyses are needed, one can work on the data set “coda ”. 

For the regression model, the history and histogram plots for the regression model are 
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given in Figure 2. From the history plots, the generated sequences for all parameters 

converged through the “eyeball” check. The density plots and descriptive statistics for the 

four model parameters are given in Figure 2 and Table 1, respectively. From Table 1, the 

estimated parameters were very close to the population values used to generate the data. 

---------- Insert Figure 2 and Table 1 about here ------- 

Example 2. The Linear Growth Curve Model 

We have shown how to use the procedure in Figure 1 to estimate a multiple 

regression model. In this example, we present a linear growth curve model to demonstrate 

how to specify a more complex model using WinBUGS syntax. The linear growth curve 

model (e.g., McArdle & Nesselroade, 2003) can be written as 

    

[ , ] [ ] [ ] [ , ]

[ ] [ ]       1, , N; 1, ,T

[ ] [ ]
L L

S S

y i t L i t S i e i t

L i v i i t

S i v i

µ
µ

= + × +
= + = =
= +

L L ,                

where y[i,t] represents the observed score for the ith individual at occasion t, L[i] 

represents the level and S[i] represents the slope for the ith individual, e[i,t] represents the 

measurement error, µL and µS are the average level and slope of N individuals, and vL[i] 

and vS[i] are the individual deviances for the initial level and slope from the average level 

and slope for ith individual. 

Using probability density function, this model can be expressed as 

(2)  

2

2

2

[ , ] | [ ], [ ] ~ ( [ , ], )
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[ ]
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[ ]

e
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µ

µ σ σ
µ σ σ
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L L ,    

where N represents the univariate normal distribution, σe
2 represents the variance of 

measurement errors, MN represents the multivariate normal distribution, σL
2 and σS

2 



A SAS Interface for WinBUGS 15 

 

represent the variances of the level and slope respectively, and σLS is the covariance 

between the level and slope. Equation (2) indicates that the level and slope have a 

bivariate normal distribution and the observed variable has a univariate normal 

distribution with the mean expressed as the combination of the level and slope. 

Based on this linear growth curve model, we simulated a data set with N=1000 

participants, and T=5 occasions using SAS with the population parameter values µL=10, 

µS =5, σe
2 =1, σL

2=4, σS
2=1, and σLS=1 or ρLS=.5. Since the maximum likelihood 

estimation (MLE) has commonly applied to obtain parameter estimates for the linear 

growth curve model (e.g., Demidenko, 2004; Laird & Ware, 1982), we briefly compare 

the results from Bayesian estimation (BE) with those from MLE.  

For the linear growth curve model, the model specification part is given in CODE 9. 

CODE 9. Model specification of the linear growth model 
DATA model; 
INPUT model $80.; 
CARDS;/*Start of the model scripts*/ 

model 
{#Model 
   for (i in 1:N){ 
       LS[i,1:2]~dmnorm(Mu[1:2], Inv_cov[1:2,1:2]) 
           for (t in 1:T){ 
                y[i,t]~dnorm(MuY[i,t], Inv_sig2_e) 
                MuY[i,t]<-LS[i,1]+LS[i,2]*t 
            } 
    } 
   #Prior 
   Mu[1:2]~dmnorm(Mu0[1:2], Inv_cov0[1:2,1:2]) 
   Mu0[1]<-0 
   Mu0[2]<-0 
   Inv_cov0[1,1]<-1.0E-6 
   Inv_cov0[2,2]<-1.0E-6 
   Inv_cov0[2,1]<-Inv_cov0[1,2] 
   Inv_cov0[1,2]<-0 
 
   Inv_cov[1:2,1:2]~dwish(R[1:2,1:2], 2) 
   R[1,1]<-1 
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   R[2,2]<-1 
   R[2,1]<-R[1,2] 
   R[1,2]<-0 
 
   Inv_sig2_e~dgamma(.001,.001) 
    
   #Transform of the parameters 
   MuL<-Mu[1] 
   MuS<-Mu[2] 
   Cov[1:2,1:2]<-inverse(Inv_cov[1:2,1:2]) 
   Sig2_L<-Cov[1,1] 
   Sig2_S<-Cov[2,2] 
   rho<-Cov[1,2]/sqrt(Cov[1,1]*Cov[2,2]) 
   Sig2_e<-1/Inv_sig2_e 
} 
;  

/*end of the model scripts*/ 
RUN; 
 
DATA _NULL_; 
  SET model; 
  FILE 'C:\SASWinBUGS\GrowthModel.txt’; 
  PUT model; 
RUN; 

Since the level and slope are bivariate normally distributed, we need to specify a 

bivariate normal distribution for them which is dmnorm in WinBUGS. The bivariate 

normal distribution has two augments: mean vector and covariance matrix. In WinBUGS, 

the second augment for dmnorm is the precision which is the inverse of the covariance 

matrix. In WinBUGS, this bivariate distribution was expressed as 

LS[i,1:2]~dmnorm(Mu[1:2], Inv_cov[1:2,1:2]) , 

where LS[i,1:2]  is a 2×1 vector with two elements LS[i,1]  and LS[i,2] ; 

LS[i,1] is the level and LS[i,2]  is the slope for individual i; Mu[1:2]  is a 2×1 

mean vector; and Inv_cov[1:2,1:2]  is the inverse of the covariance matrix of the 

initial level and slope. Since we had N=1000 individuals, we used a for (i in 1:N){…}  

loop to repeat this specification for each individual. The observed variable y  had a 
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univariate normal distribution which was expressed as  

y[i,t]~dnorm(MuY[i,t], Inv_sig2_e) . 

Because each individual had an observation from occasion 1 to T=5, we used a second 

loop for (t in 1:T)  nested in the first one to represent this. 

For the linear growth model, there were 6 parameters, Mu[1,2] , 

Inv_cov[1:2,1:2] , and Inv_sig2_e . We gave the mean vector Mu[1,2]  a 

bivariate normal distribution prior. For the precision matrix (Inv_cov[1:2,1:2] ), a 

Wishart distribution prior was used since it is the multivariate generalization of the 

Gamma distribution. For the precision of y , a Gamma distribution prior was used. 

By running the codes in CODE 9, the WinBUGS scripts for the growth curve model 

were saved into a file called ‘GrowthModel.txt ’.  

In this example, we used the N×T (1000×5) array data y[i,t] . Using the scripts in 

CODE 10, the SAS data set Sim_LinGM  was converted to WinBUGS array data using 

macro _sexport  and saved into a file called GrowthData.txt . All the starting 

values were put together in a list  and saved in the file “InitValues.txt ”. Note 

that this set of starting values included all three types of data. 

CODE 10. Data transformation and starting values for the 
linear growth curve model 

%_sexport(data=Sim_LinGM,  
file ='C:\SASWinBUGS\GrowthData.txt', 
var =y1-y5); 

DATA _NULL_; 
FILE "C:\SASWinBUGS\InitValues.txt"; 
PUT "list(Mu=c(0,0), Inv_cov= structure(.Data = 

c(1,0,0,1),.Dim=c(2,2)), Inv_sig2_e=1) "; 

The batch scripts and the .bat  file for this linear growth curve model were very 

similar to those for the regression model and we did not repeat them here. The complete 
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SAS codes for this model are available by request. After running the complete SAS codes, 

all parameter estimates from WinBUGS along with those from SAS MIXED are 

summarized in Table 2. From Table 2, the parameter estimates from WinBUGS were very 

close to the population values. Furthermore, the parameter estimates from WinBUGS and 

SAS MIXED were nearly identical, which demonstrates that Bayesian method estimation 

provides the same level of accuracy as MLE when non-informative priors are used. 

--------- Insert Table 2 about here ---------------- 

Example 3. Monte Carlo Simulation of a Confirmatory Factor Model 

 Bayesian methods have been mainly used as an alternative to MLE or to estimate 

complex models which usually cannot be easily estimated with MLE. Simulation studies 

are necessary when evaluating new or complex models. WinBUGS is not very flexible 

for simulation studies because it can only run a single model or a single data set at one 

time. However, SAS can be sued to iteratively implement the simulation procedure. To 

demonstrate how to use SAS to iteratively run WinBUGS, we use a confirmatory factor 

model with one latent factor and four observed variables. A path diagram with the 

population parameter values is plotted in Figure 3. We generated 100 sets of data from the 

population models and parameter estimates were obtained for each data set using 

WinBUGS. We compared the mean of the parameter estimates from all 100 sets of data 

with the population values.  

--------------- Insert Figure 3 about here----------------- 

 For the simulation study, the model specification, starting values, and script file to 

run WinBUGS are the same for each data set. The following codes in CODE 11 can be 

used to set up those for the confirmatory factor model. In this example, a new WinBUGS 
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command “stat() ” was used, which calculated the summary statistics for each 

parameter inside WinBUGS. 

CODE 11.Common scripts for the CFA simulation 
TITLE “Model specification for the CFA”;  
FILENAME model "C:\SASWinBUGS\cfamodel.txt"; 
DATA model; 

INPUT model $80.; 
CARDS;/*start the model*/ 
model{ 

for (i in 1:N){ 
    for (t in 1:T){ 
         y[i,t]~dnorm(muy[i,t],Inv_sig2[t]) 
         muy[i,t]<-fload[t]*fscore[i] 

} 
fscore[i]~dnorm(0, 1) 
} 
for (t in 1:T){ 

fload[t]~dnorm(0, 1.0E-6)I(0,) 
Inv_sig2[t]~dgamma(0.001, .001) 
Para[t]<-fload[t] 
Para[t+4]<-1/Inv_sig2[t] 

} 
} 
; 

RUN; 
DATA _NULL_; 
  SET model; 
  FILE model; 
  PUT model; 
RUN; 
 
TITLE “Starting values for CFA”; 
DATA _NULL_; 

FILE "C:\SASWinBUGS\cfaini.txt"; 
PUT "list(fload=c(.5,.5,.5,.5), Inv_sig2=c(1,1,1,1) )"; 

RUN; 
 
TITLE “Batch scripts to run WinBUGS”; 
FILENAME runcfa 'c:\program files\winbugs14\runcfa. txt'; 
DATA _NULL_; 
  FILE runcfa; 
  PUT@1 "display('log')"; 
  PUT@1 "check('C:/SASWinBUGS/cfamodel.txt')" ; 
  PUT@1 "data('C:/SASWinBUGS/cfadata.txt')"; 
  PUT@1 "compile(1)"; 
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  PUT@1 "inits(1, 'C:/SASWinBUGS/cfaini.txt')"; 
  PUT@1 "gen.inits()"; 
  PUT@1 "update(2000)"; 
  PUT@1 "set(Para)"; 
  PUT@1 "update(3000)"; 
  PUT@1 "stats(*)"; 
  PUT@1 "save('C:/SASWinBUGS/cfalog.txt')"; 
  PUT@1  "quit()"; 
RUN; 
 
DATA _NULL_; 

FILE "C:\SASWinBUGS\runcfa.bat"; 
PUT '"C:\program files\WinBUGS14\WinBUGS14.exe" /PA R 

runcfa.txt'; 
PUT 'exit'; 

RUN; 

 For the Monte Carlo simulation study, each data set generated from the population 

model was different and the parameter estimates from each data set generally were likely 

to be somewhat different. Thus, we need to generate multiple data sets and estimate the 

parameters for each data set iteratively. To do this, we used a macro that can be called 

iteratively. Each time this macro was called, it generated a data set and obtained 

parameter estimates from the model. The macro simcfa(n) for the CFA is given in 

CODE 12. In the first part, a data set was generated from the population model. Then this 

data set was saved into a file “cfadata.txt ” in WinBUGS data format. In the next 

part, WinBUGS was run in X window to implement the Bayesian analysis based on this 

generated data set. Finally, the log file was read into SAS to obtain the parameter 

estimates. Notice that we did not save the CODA files and calculate the parameter 

estimates in SAS. Instead, we read in the parameter estimates from the log file directly. In 

this case, we need to make sure the generated sequences converged. In the current 

example, we first ran one set of data and found that the generated sequences for all 

parameters converged after 100 iterations. Although we may use 100 as the burn-in data 
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points, we used 2000 to ensure the convergence for all the other data sets.  

CODE 12. The macro for data generation and model estimaiton 
%MACRO simcfa(n); 
TITLE 'Generate the Data'; 
DATA Sim_CFA; 
*setting the true parameter values; 
fload=.8; sig2=.36; 
* setting statistical parameters; 
  N = 200; seed = 20060802+&n; M=4; 
* need to setup arrays so we can have more variable s; 
ARRAY y_score{4} y1-y4; 
ARRAY e_score{4} y1-y4;  
 
* generating raw data; 
  DO _N_ = 1 TO N; 
* now the indicator variables ; 
      f_score=RANNOR(seed); 
       DO t = 1 TO M; 
         y_score{t} = fload*f_score 
+sqrt(sig2)*RANNOR(seed); 
 END; 
   KEEP y1-y4; 
   OUTPUT; 
   END; 
RUN; 
 
/*Data*/ 
%_sexport(data=Sim_CFA, file='C:\SASWinBUGS\cfadata .txt', 
var=y1-y4); 
 
 
/*Run WinBUGS*/ 
DATA _NULL_; 

X "C:\SASWinBUGS\runcfa.bat"; 
RUN; 
QUIT; 
 
/*Read in the log file to view the parameters*/ 
TITLE 'Simulation '&n; 
DATA log; 

INFILE "C:\SASWinBUGS\cfalog.txt" TRUNCOVER ; 
INPUT log $80.; 
log=translate(log," ","09"x); 
IF (SUBSTR(log, 2, 4) ne 'Para') then delete; 

RUN; 
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PROC PRINT DATA=log; 
RUN; 
%MEND; 

To run the macro above 100 times to generate 100 data sets and obtain 100 sets of 

parameters, we configured another macro runsimcfa  which is given in CODE 13. 

CODE 13.The macro for running simulation iteratively 
%MACRO runsimcfa; 
   %LET n=1; 
      %DO %WHILE(&n <= 100); 
         %simcfa(&n); 
      %LET n=%EVAL(&n+1); 
   %END; 
%MEND runsimcfa; 
*run the macro 
%runsimcfa;  

After running the codes in CODE 13, the 100 sets of parameter estimates were 

printed in the SAS output window. Usually, for each parameter, we need to calculate 3 

numbers: the mean and the standard deviation (s.d.) of each parameter estimate, and the 

mean of the associated standard errors (MSE) from the 100 sets of data. All of these can 

be calculated using the SAS codes in CODE 14. 

CODE 14. Data process of the simulation results 
/*Save the output and log into files*/ 
DM OUTPUT 'FILE "C:\SASWinBUGS\allresults.txt"'; 
DM LOG    'FILE "C:\SASWinBUGS\allresults.log"'; 
 
TITLE “Analyze the Monte Carlo simulation results”;  
DATA temp; 

INFILE "C:\SASWinBUGS\allresults.txt" TRUNCOVER ; 
INPUT all $90.; 
IF (SUBSTR(all, 7, 4) NE 'Para')  THEN DELETE; 
FILE "C:\SASWinBUGS\temp.txt"; 
PUT all; 

RUN; 
 
DATA temp; 
INFILE  "C:\SASWinBUGS\temp.txt"; 
INPUT parid parname $ parest parsd MCerror p25 medi an p975 
start sample; 
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id=int((_N_-.1)/8)+1; 
parest=abs(parest); 
RUN; 
 
/*Parameter Estimates*/ 
PROC TRANSPOSE DATA=temp OUT=parest PREFIX=par; 
    BY id ; 
    ID parid; 
    VAR parest; 
RUN; 
/*Calculate the mean and s.d. of the parameters*/ 
PROC MEANS DATA=parest; 
VAR par1-par8; 
RUN; 
 
/*SDs*/ 
PROC TRANSPOSE DATA=temp OUT=parsd PREFIX=sd; 
    BY id ; 
    ID parid; 
    VAR parsd; 
RUN; 
/*Calculate the mean of the s.e.*/ 
PROC MEANS DATA=parsd; 
VAR sd1-sd8; 
RUN; 

 After running CODE 11 through CODE 14, we can obtain the results in Table 3. The 

means of the parameter estimates are very close to the population parameter values to 

generate the data. Furthermore, the standard deviations were the same as the MSE 

indicating the estimated standard errors were consistent with the true standard errors.  

-----------Insert Table 3 about here----------------- 

Discussion 

WinBUGS is a powerful tool for implementing Bayesian analysis and estimating 

complex models (Rupp et al., 2004) and SAS is widely used statistical software in 

academic and research institutes. Their combination will advance the application of both 

Bayesian methods and sophisticated models in social and behavioral research. The whole 

procedure we presented and the SAS codes we provided can conveniently interface SAS 
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and WinBUGS. This procedure is beneficial to many researchers including advanced 

Bayesian users who already have rich experiences in Bayesian analysis and researchers 

who are familiar with SAS but yet to find out the utility of Bayesian approach.  

The procedure in Figure 1 was illustrated using a multiple regression model, a linear 

growth curve model, and a confirmatory factor model. In the first example, we 

demonstrated how to apply the proposed interface between SAS and WinBUGS using a 

multiple regression model. The second example showed how to specify a more complex 

model and the last example focused on the iterative use of WinBUGS for Monte Carlo 

simulation studies. All three examples can be replicated and modified to accommodate 

new models.  

Two concerns about the Bayesian analysis include the computational time and 

programming intensity. However, with the availability of powerful computing facilities, 

the computing time is not a big problem any more. For example, the multiple regression 

model took about 10 seconds to finish the estimation procedure on an “out-of-dated” 

laptop (Celeron 1.7 and 512M RAM). The growth curve model with N=1000 and T=5 

took about 120 seconds. For the confirmatory factor model example, it took only 30 

minutes to finish the whole simulation study (with 100 sets of data). Furthermore, 

although the different models need different model specification, the example WinBUGS 

codes for many models can be obtained freely. By simply replacing the model 

specification part in our example and with a few other minor changes, a new data set can 

be analyzed by a new model. 

For the aim of illustration, we only used three relatively simple models as examples. 

However, the same procedure allows and shows advantages when estimating more 
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complex models which cannot be analyzed in SAS easily, such as the change point 

models (McArdle & Wang, 2007; Wang & McArdle, under review), dynamic item 

response models (Ram et al., 2005) and categorical dynamic factor models (Zhang & 

Nesselroade, 2007). Complexity of models also made the difference of computation time 

less noticeable between Bayesian and MLE methods. However, the precision of the 

parameter estimates is even better for Bayesian methods. 

To close the discussion, we would like to evaluate the proposed procedure based on 

our practical experience. First, this procedure is very useful for analyzing data using the 

similar model. For example, when we analyzed the cognitive data using the same linear 

growth curve model, we only need to import the data into SAS and run the exact same 

procedure without changing anything except the name of the data set. Second, this 

procedure is especially useful for simulation studies. It is well known that WinBUGS is 

not flexible for simulation studies because it can run only single replication at one time. 

Our procedure can be viewed as a useful supplement to WinBUGS. This procedure has 

been proved useful in Bowels (2006), Zhang, Hamaker, and Nesselroade (in press), and 

Zhang and Nesselroade (2007) for different simulation studies.     
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Appendix 

Appendix A. List of the programs or macros 

1. SAS: http://www.sas.com 

2. WinBUGS: http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml 

3. R2WinBUGS by Sibylle Sturtz and Uwe Ligges: 

http://cran.r-project.org/src/contrib/Descriptions/R2WinBUGS.html 

4. SAS Macros by Rodney Sparapani: http://www.mcw.edu/pcor/bugs/ 

5. xl2bugs by Sanjog Misra: http://smisra.simon.rochester.edu/software.htm 

6. BAUW by Zhiyong Zhang and Lijuan Wang: http://bauw.psychstat.org 

7. Modified version of Rodney Sparapani’s SAS Macros: http://bauw.psychstat.org 
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Table 1. 

The parameter estimates for the regression model. 

 True estimate s.e. CI 

b0 1 0.99 0.064 (0.87, 1.12) 

b1 2 2.04 0.065 (1.92, 2.17) 

b2 3 3.01 0.064 (2.89, 3.14) 

sig2_e 4 4.06 0.184 (3.71, 4.45) 

 

Note. s.e.: standard error; CI: confidence interval. 
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Table 2.  

Parameter estimates for the linear growth model 

 
 WinBUGS SAS MIXED 

True Value Estimate s.e. Estimate s.e. 

µL 10 10.12 0.071 10.12 0.071 

µS 5 5.01 0.033 5.01 0.034 

σL
2 4 3.96 0.227 3.96 0.226 

σS
2 1 1.04 0.051 1.04 0.051 

σe
2 1 0.97 0.025 0.97 0.025 

ρLS 0.5 0.45 0.034 0.44 0.038 

 

Note. s.e.: standard error. 
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Table 3. 

Results from the confirmatory factor analysis 

Parameters      TRUE Mean s.d. MSE 

Factor  
Loadings 

0.8 0.81 0.06 0.06 

0.8 0.82 0.06 0.06 

0.8 0.80 0.06 0.06 

0.8 0.81 0.06 0.06 

Uniqueness  
Variances 

0.36 0.35 0.04 0.05 

0.36 0.37 0.05 0.05 

0.36 0.38 0.05 0.05 

0.36 0.36 0.05 0.05 

 

Note. Mean: the average value of the parameter estimates from 100 sets of simulated data. 

s.d.: the standard deviation of the parameter estimates from 100 sets of simulated data. 

MSE: the average standard errors of the parameter estimates from 100 sets of simulated 

data.
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                              Figure Captions 

Figure 1. The flow chart to run WinBUGS inside SAS 

Figure 2. History plots and Histogram plots of parameters from the regression model 

Figure 3. Path diagram for the population confirmatory factor model 
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Figure 1. The flow chart to run WinBUGS inside SAS 

Step 1: Install SAS and 
WinBUGS 

Step 2: Setup SAS 
environment for WinBUGS 

Step 1-1: Install SAS 

Step 1-2: Install 
WinBUGS 

Step 3: Express the model in 
WinBUGS language 

Step 4: Configure a SAS 
program to run WinBUGS 

Step 4-1: Create a 
WinBUGS data file 

Step 4-2: Create a 
starting values file 

Step 4-3: Create a script 
file to run WinBUGS 

Step 4-4: Run WinBUGS 
and debug errors 

Step 4-5: Read CODA 
files into SAS and 

Implement statistical 
inference 
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Figure 2. History plots and Histogram plots of parameters from the regression model 
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Figure 3. Path diagram for the population confirmatory factor model 


