
A SAS Interface for WinBUGS 1

Running Head: A SAS Interface for WinBUGS

A SAS Interface for Bayesian Analysis with WinBUGS

Zhiyong Zhang1, John J. McArdle2, Lijuan Wang1, and Fumiaki Hamagami3

1University of Notre Dame 2University of Southern California

3University of Virginia

To cite this paper, use

Zhang, Z., McArdle, J. J., Wang, L., & Hamagami, F. (2008). A SAS interface for

Bayesian analysis with WinBUGS. Structural Equation Modeling, 15(4), 705–728.

Corresponding Author: Zhiyong Zhang, Department of Psychology, University of Notre

Dame, Notre Dame, IN 46556. E-Mail: zzhang4@nd.edu.

A SAS Interface for WinBUGS 2

Abstract

Bayesian methods are becoming very popular despite some practical difficulties in

implementation. To assist in the practical application of Bayesian methods, we show how

to implement Bayesian analysis with WinBUGS as part of a standard set of SAS routines.

This implementation procedure is first illustrated by fitting a multiple regression model

and then a linear growth curve model. A third example is also provided to demonstrate

how to iteratively run WinBUGS inside SAS for Monte Carlo simulation studies. The

SAS codes used in the current study are easily extended to accommodate many other

models with only slight modification. This interface can be of practical benefit in many

aspects of Bayesian methods because it allows the SAS users to benefit from the

implementation of Bayesian estimation and it also allows the WinBUGS user to benefit

from the data processing routines available in SAS.

A SAS Interface for WinBUGS 3

A SAS Interface for Bayesian Analysis with WinBUGS

Bayesian methods have received more and more attention in social and behavioral

researches (e.g., Myung & Pitt, 1997; Seltzer & Choi, 2003; Lee, 2004) and these models

have been successfully applied to item response models (e.g., Chang, 1996; Fox & Glas,

2001), factor analytic models (e.g., Bartholomew, 1981; Lee, 1981), structural equation

models (e.g., Scheines, Hoijtink, & Boomsma, 1999; Congdon, 2003), genetic models

(e.g., Eaves & Erkanli, 2003), growth curve models (e.g., Zhang, Hamagami, Wang,

Grimm, & Nesselroade, 2007), and multilevel models (e.g., Seltzer, Wong, & Bryk,

1996). In a recent debate by Trafimow (2003, 2005) and Lee & Wagenmakers (2005), the

advantages and disadvantages of Bayesian methods were discussed and a promising

future of Bayesian applications has been suggested. Based on the review of applications

of Bayesian methods in social and behavioral research, Rupp, Dey, and Zumbo (2004)

further concluded that both applied and theoretical communities could not afford to miss

the opportunities opened up by Bayesian methods.

A drawback to the implementation of Bayesian analysis and estimation is the

programming and computation demands. However, with the development of the

computation capacity, the cost of computation is acceptable given its benefits.

Furthermore, the emergence of the free available WinBUGS software (Spiegelhalter,

Thomas, Best, & Lunn, 2003) has made the programming much easier than before.

WinBUGS is accepted as the most widely used and convenient tool for estimating both

simple and complex Bayesian models (Congdon, 2001, 2003; Cowles, 2004).

A complete WinBUGS program consists of three parts: (1) Model Specification, (2)

Data Input, and (3) Starting Values. Users first need to learn how to specify a model in

A SAS Interface for WinBUGS 4

WinBUGS syntax and these specifications vary across different models. In this paper, we

will illustrate how to specify three models: a multiple regression model, a growth curve

model, and a confirmatory factor model. Because the contributed WinBUGS example

programs for many models are available freely on the WinBUGS development website,

we focus on helping readers understand WinBUGS codes and customize the codes for

their own empirical data analysis.

The data format in the Data Input and Starting Values parts of WinBUGS is very

similar to Splus / R data format (Spiegelhalter, Thomas, Best, & Lunn, 2003).

Researchers who are not familiar to the Splus/R data format may find it difficult to

transform data to be compatible with WinBUGS. Fortunately, there are some free

programs or macros that can transform different formats of data to WinBUGS format,

such as an R function R2WinBUGS by Sturtz and Ligges, a set of SAS macros by

Sparapani, an excel macro xl2bugs by Misra, and a standalone program BAUW by Zhang

and Wang (see Appendix A for Internet links).

Although WinBUGS can be used as menu-driving software, we present a batch

procedure to call and run WinBUGS inside a SAS script. This procedure has several

advantages over other methods. First, it is easy to run WinBUGS for researchers who are

already familiar with SAS. Second, it permits a researcher to use SAS procedures before

and after Bayesian modeling. It is easy to describe and transform data first in SAS, run

the WinBUGS program for Bayesian estimation, and then save and plot results using

SAS procedures. Third, although WinBUGS provides a “menu” to run the program, the

“batch” processing approach used here decreases the probability of mistakes and allows

users to easily repeat similar analyses. This procedure is especially useful and convenient

A SAS Interface for WinBUGS 5

for analysis requiring the repetition, such as in Monte Carlo simulation studies. This

procedure is demonstrated in the following sections.

A Complete Procedure to Run WinBUGS inside SAS

To run WinBUGS inside SAS, the procedure portrayed in Figure 1 can be followed.

In the following sections, we describe this procedure using three examples: (1) a multiple

regression model, (2) a linear growth curve model, and (3) a confirmatory factor analysis

model. The first example aims to demonstrate how to apply the whole procedure in

Figure 1, including how to specify a model, transform data, create starting values, and run

WinBUGS inside SAS to implement Bayesian analysis. The second example is based on

the linear growth curve model (e.g., Meredith & Tisak, 1990; McArdle & Nesselroade,

2003) and aims to illustrate how to specify a more complex model. The third example

aims to show how to iteratively run WinBUGS inside SAS for the Monte Carlo

simulation study.

--------- Insert Figure 1 about here ----------------

Example 1. The Multiple Regression Model

 For the purpose of demonstration, we use a multiple regression model with two

predictors. The model can be written as

y[i] = b0 + b1 * x1[i] + b2 * x2[i] + e[i], i=1, …, N.

In its probability form, this model can be expressed as

(1) y[i] | x1[i], x2[i] ~ N(µ[i], σe
2)

µ[i] = b0 + b1 * x1[i] + b2 * x2[i],

where σe
2 is the residual or measurement error variance, b0 is the intercept, and b1 and b2

are regression coefficients. A data set with the sample size N=1000 was generated from

A SAS Interface for WinBUGS 6

this model with the population parameter values set as b0 = 1, b1 = 2, b2 = 3, and σe
2 = 4.

The SAS codes for data generatation are given in CODE 1. The complete codes for

running WinBUGS inside SAS to fit this multiple regression model are provided in

CODE 2 through CODE 8.

CODE 1.Data generatation
DATA Sim_Reg;
 b0=1; b1=2; b2=3; sig_e=2; seed=20060118; N = 100 0;
 DO _N_ = 1 TO N;
 x1=RANNOR(seed);
 x2=RANNOR(seed);
 e=RANNOR(seed);
 y = b0+b1*x1+b2*x2+sig_e*e;
 KEEP y x1 x2;
 OUTPUT;
 END;
RUN;

CODE 2.Model specification
DATA model;
INPUT model $80.;
CARDS;/*start the model*/
model{
#Model specification
 for (i in 1:N) {
 y[i]~dnorm(muy[i], Inv_sig2_e)
 muy[i]<-b0+b1*x1[i]+b2*x2[i]
 }
#priors
 b0~dnorm(0, 1.0E-6)
 b1~dnorm(0, 1.0E-6)
 b2~dnorm(0, 1.0E-6)
 Inv_sig2_e~dgamma(1.0E-3, 1.0E-3)
#parameter transformation
 Sig2_e<-1/Inv_sig2_e
}
;
RUN;
DATA _NULL_;
 SET model;
 FILE "C:\SASWinBUGS\RegModel.txt";
 PUT model;
RUN;

A SAS Interface for WinBUGS 7

CODE 3.Data transformation
%_lexport(data=Sim_Reg, file='C:\SASWinBUGS\RegData .txt',
var=y x1 x2);

CODE 4.Starting values specification
DATA _NULL_;
FILE "C:\SASWinBUGS\RegInit.txt";
PUT "list(b0=0, b1=0, b2=0, Inv_sig2_e=1)";
RUN;

CODE 5.Batch scripts to run WinBUGS
DATA _NULL_;
FILE "C:\program files\WinBUGS14\RegBatch.txt";
PUT // @@
#1 "display('log')"
#2 "check('C:/SASWinBUGS/RegModel.txt')"
#3 "data('C:/SASWinBUGS/RegData.txt')"
#4 "compile(1)"
#5 "inits(1, 'C:/SASWinBUGS/RegInit.txt')"
#6 "gen.inits()"
#7 "update(2000)"
#8 "set(b0)"
#9 "set(b1)"
#10 "set(b2)"
#11 "set(Sig2_e)"
#12 "dic.set()"
#13 "update(5000)"
#14 "dic.stats()"
#15 "coda(*,'C:/SASWinBUGS/output')"
#16 "save('C:/SASWinBUGS/bugslog.txt')"
#17 "quit()"
;
RUN;

CODE 6.Run WinBUGS in SAS X window
DATA _NULL_;
FILE "C:\SASWinBUGS\runreg.bat";
PUT 'CD C:\program files\WinBUGS14';
PUT 'WinBUGS14.exe /PAR RegBatch.txt';
PUT 'EXIT';
RUN;

DATA _NULL_;
X "C:\SASWinBUGS\runreg.bat";
RUN; QUIT;

CODE 7.View log file and DIC and debug errors

A SAS Interface for WinBUGS 8

DATA log;
INFILE "C:\SASWinBUGS\bugslog.txt" TRUNCOVER;
INPUT log $80.;
log=translate(log," ","09"x);
RUN;

PROC PRINT DATA=log;
RUN;

CODE 8.Statistical inference
%coda2sas(out=coda, infile='C:\
SASWinBUGS\outputIndex.txt',
chain='C:\SASWinBUGS\output1.txt', stats=1);
QUIT;

Step 1: Install SAS and WinBUGS

The first step is to install SAS and WinBUGS. Since SAS is widely used, we assume

that SAS has been installed and only focus on the installation of WinBUGS. WinBUGS is

free software and can be downloaded from its website (Appendix A). The download is an

executable file and it can be setup as a usual “double click and follow screen instructions”

Windows program. WinBUGS requires a key for its unrestricted use. The key is sent by

e-mail once the user completes a registration form on the WinBUGS website.

Step 2: Setup SAS environment for WinBUGS

A set of free SAS macros written by Sparapani (Appendix A) can be used to

transform data from SAS data format to WinBUGS data format. The macros can be

downloaded from their website (See Appendix A, #4). A slightly modified version was

used in this article, which is also freely available (Appendix A, #7). The following

instructions can be followed to setup the macros.

1. Put the macros into a folder. To avoid unintentionally deleting these macros, we

suggest putting the macros into the folder “C:\Program Files\SAS\bugs ”.

“bugs ” is a new folder that needs to be created first.

A SAS Interface for WinBUGS 9

2. Modify the SAS configuration file, sasv8.cfg for SAS 8.x or sasv9.cfg for SAS 9.x.

Open the file in notepad and add the two lines below at the end and save it.

 -insert sasautos 'C:\Program Files\SAS\bugs'
 -insert sasautos '!SASROOT\core\sasmacro'

Step 3: Express the model in WinBUGS language

To implement Bayesian analysis in WinBUGS, we first need to express the models

using WinBUGS syntax. For a typical WinBUGS program, the model specification part

must include two sub-parts: the expression of the model and the choice of prior

distributions (Spiegelhalter, Thomas, Best, & Lunn, 2003). For the regression model, the

codes are given in CODE 2.

All WinBUGS programs start with a keyword model and the whole model

specification part needs to be put within a pair of brackets { } . The first section of the

model specification part can be viewed as the direct translation of the probability form of

the model. For the regression model in Equation (2), WinBUGS codes for the ith

individual were

y[i] ~ dnorm(muy[i], Inv_sig2_e) , and

muy[i] <- b0 + b1*x1[i] + b2*x2[i] .

The first line indicates that y[i] had (~) a normal distribution (dnorm) with two

arguments: mean muy[i] and precision Inv_sig2_e . The precision in the second

arguments is the reciprocal of the variance (1/σe
2). The mean was equal to (<-) the

combination of the two predictor x1 and x2 with the regression coefficients b1 and b2 .

Because we had N=1000 individuals, we used a for (i in 1:N){…} loop to repeat this

specification for each individual. For is the keyword for a loop. i in 1:N in the

parentheses means replacing i using 1, 2, …, N and then implement everything in the

A SAS Interface for WinBUGS 10

brackets {} following for (i in 1:N) .

In the second section of the model specification part, we need to choose a prior

distribution for each parameter in the model. For this regression model, there were 4

parameters, b0 , b1 , b2 , and Inv_sig2_e . For the regression intercept and regression

coefficients, the normal distribution priors with mean 0 and precision 1.0E-6 were

specified as bk~dnorm(0, 1.0E-6) with k=0,1,2 , which is a widely used

non-informative prior (Congdon, 2001, 2003). For the precision parameter, a Gamma

distribution (dgamma) prior with shape and scale parameter = 1.0E-3 was used

Inv_sig2_e~dgamma(1.0E-3, 1.0E-3) , which is also a widely used

non-informative prior for the variance parameter (Congdon, 2001, 2003). Finally, we

transformed the precision back to the variance.

By running the codes in CODE 2, the WinBUGS model specification codes for the

multiple regression model were saved into a file called ‘RegModel.txt ’.

Step 4: Configure a SAS program to run WinBUGS

In this step, we configured a SAS program to create WinBUGS compatible data,

construct a staring value file, run WinBUGS, and analyze the MCMC data generated by

WinBUGS. The following 5 steps can be done in SAS.

Step 4-1: Create a WinBUGS data file

By using the SAS macros in Step 2, a SAS data set can be converted to the

WinBUGS format. WinBUGS uses a keyword list(…) to organize the data. The data

in the parentheses can be a scalar, a vector, or an array. For a scalar, the format is

ScalarName=data . For example, N=1000 and T=5. For a vector, the format is

VectorName=c(data1, data2, …, dataN) . The keyword c combines the values

A SAS Interface for WinBUGS 11

separated by the comma in the parentheses into a vector. For example, Mu=c(0,0) is a

vector with 2 elements. For an array, the format is ArrayName=structure(.Data

= c(data1, data2, …), .Dim = c(nrow, ncol,…)) . WinBUGS reads data

in .Data = c(data1, data2, …) into an array by filling the right-most index for

dimensions in .Dim = c(nrow, ncol,…) first. For example, for a two-dimension

(3×2) array,

y=structure(.Data=c(1,2,3,4,5,6), .Dim=c(3,2))=

1 2

3 4

5 6

.

The SAS macros set up in Step 2 can convert SAS data into a list with vector

(_lexport) or array (_sexport). Using the codes in CODE 3, a SAS data set was

converted to WinBUGS vector data and saved into a file. In this example, the macro

_lexport was used. data= defines the SAS data set to be used. Here it was a SAS

data set called Sim_Reg . file= defines the file to save the data in WinBUGS data

format. var= defines the variables to transform. In the generated data file, three

vectors, y , x1 , and x2 along with a scalar representing the sample size (N=1000) were

saved.

Step 4-2: Create a starting value file

For each parameter in the model, a starting value needs to be either specified

manually or generated by WinBUGS. Usually, for each canonical parameter, we give it a

starting value manually and let WinBUGS generate the others. The format of the starting

values has the same format as the data. The same way to transform data can be used to

create starting values. Usually, the starting values are relatively easier to handle and can

be put together directly. The SAS codes in CODE 4 created a starting value file for the

A SAS Interface for WinBUGS 12

regression model. All the staring values were put together in a list and saved in the file

“RegInit.txt ”.

Step 4-3: Create a script file to run WinBUGS

In this step, we used the batch mode to run WinBUGS. CODE 5 provides the SAS

codes for the regression model.

Line #1 opened a log window to trace the history and errors of the implementation

process. Line #2 checked whether the syntax in the file ‘RegModel.txt ’ was correct.

Line #3 read in the data, Line #4 compiled the model, Line #5 initialized the parameters

using the data in the starting value file, and Line #6 generated the staring values for the

parameters that were not specified in the starting value file. Line #7 generated 2000 data

points for each parameter but these data points (called burn-in data points) were discarded

to ensure convergence. In Lines #8–11 the parameters were specified to be estimated. The

parameters need to be specified since the sampled data points for unspecified parameters

will not be saved. Line #12 was used to monitor the DIC (Spiegelhalter et. al. 2002) that

can be used as a fit statistic to compare models. Line #13 generated the other 5000 data

points which were saved to be analyzed in SAS for statistical inference. Line #14 wrote

the DIC into the log file. Line #15 saved the generated data points in Line #13 into two

files. The first file was the index file ‘outputIndex.txt ’ that included the index for

each estimated parameter defined in Lines #8-11. The second file was the data file

‘output1.txt ’ that saved the data points generated. These files were also called

CODA (Convergence Diagnostic and Output Analysis) files. Line #16 saved the log file

where the DIC and error information can be found. Line #17 was used to quit the

WinBUGS program when finished.

A SAS Interface for WinBUGS 13

Three comments are worth emphasizing here. First, this script file must be saved

where WinBUGS is installed, usually “C:\program files\WinBUGS14\ ”. Second,

one can change the folder where the model file, data file, staring value file, coda file, and

log file are saved. However, the slash “/ ” instead of the usual backslash “\ ” needs to be

used in the path. Third, WinBUGS is sensitive to the lowercase and uppercase letters.

Step 4-4: Run WinBUGS and debug errors

To run WinBUGS, we first created a run.bat file using the codes in the first

paragraph of CODE 6. We then ran WinBUGS in the X window using the codes in the

second paragraph. After implementing the first two paragraphs of the codes, a DOS

window opened and the WinBUGS program implemented the procedure specified in Step

4-3. After finished, the WinBUGS program exited and the SAS window returned. Then

the first thing to check is the log file. The codes in CODE 7 can read the log file and print

its content in the output window of SAS. Any errors in running WinBUGS can be

targeted by the information provided in the log file.

Step 4-5: Read CODA files into SAS and implement statistical inferences

The CODA file generated by WinBUGS can be read into SAS using the macro

coda2sas with the codes in CODE 8. The first argument “out= ” specified the name of

a SAS data set to save the generated data points. Here a data set called “coda ” was

created. “infile= ” specified the index file and “chain= ” specified the data file saved

in Step 4-3. By specifying “stats=1 ”, the macro coda2sas generated the history plot

and the histogram with the overlaid kernel density and calculated the descriptive statistics

for each parameter. If more analyses are needed, one can work on the data set “coda ”.

For the regression model, the history and histogram plots for the regression model are

A SAS Interface for WinBUGS 14

given in Figure 2. From the history plots, the generated sequences for all parameters

converged through the “eyeball” check. The density plots and descriptive statistics for the

four model parameters are given in Figure 2 and Table 1, respectively. From Table 1, the

estimated parameters were very close to the population values used to generate the data.

---------- Insert Figure 2 and Table 1 about here -------

Example 2. The Linear Growth Curve Model

We have shown how to use the procedure in Figure 1 to estimate a multiple

regression model. In this example, we present a linear growth curve model to demonstrate

how to specify a more complex model using WinBUGS syntax. The linear growth curve

model (e.g., McArdle & Nesselroade, 2003) can be written as

[,] [] [] [,]

[] [] 1, , N; 1, ,T

[] []
L L

S S

y i t L i t S i e i t

L i v i i t

S i v i

µ
µ

= + × +
= + = =
= +

L L ,

where y[i,t] represents the observed score for the ith individual at occasion t, L[i]

represents the level and S[i] represents the slope for the ith individual, e[i,t] represents the

measurement error, µL and µS are the average level and slope of N individuals, and vL[i]

and vS[i] are the individual deviances for the initial level and slope from the average level

and slope for ith individual.

Using probability density function, this model can be expressed as

(2)

2

2

2

[,] | [], [] ~ ([,],)

[,] [] [] 1, , N; 1, ,T

[]
~ ,

[]

e

L L LS

S LS S

y i t L i S i N i t

i t L i t S i i t

L i
MN

S i

µ σ
µ

µ σ σ
µ σ σ

= + × = =

L L ,

where N represents the univariate normal distribution, σe
2 represents the variance of

measurement errors, MN represents the multivariate normal distribution, σL
2 and σS

2

A SAS Interface for WinBUGS 15

represent the variances of the level and slope respectively, and σLS is the covariance

between the level and slope. Equation (2) indicates that the level and slope have a

bivariate normal distribution and the observed variable has a univariate normal

distribution with the mean expressed as the combination of the level and slope.

Based on this linear growth curve model, we simulated a data set with N=1000

participants, and T=5 occasions using SAS with the population parameter values µL=10,

µS =5, σe
2 =1, σL

2=4, σS
2=1, and σLS=1 or ρLS=.5. Since the maximum likelihood

estimation (MLE) has commonly applied to obtain parameter estimates for the linear

growth curve model (e.g., Demidenko, 2004; Laird & Ware, 1982), we briefly compare

the results from Bayesian estimation (BE) with those from MLE.

For the linear growth curve model, the model specification part is given in CODE 9.

CODE 9. Model specification of the linear growth model
DATA model;
INPUT model $80.;
CARDS;/*Start of the model scripts*/

model
{#Model
 for (i in 1:N){
 LS[i,1:2]~dmnorm(Mu[1:2], Inv_cov[1:2,1:2])
 for (t in 1:T){
 y[i,t]~dnorm(MuY[i,t], Inv_sig2_e)
 MuY[i,t]<-LS[i,1]+LS[i,2]*t
 }
 }
 #Prior
 Mu[1:2]~dmnorm(Mu0[1:2], Inv_cov0[1:2,1:2])
 Mu0[1]<-0
 Mu0[2]<-0
 Inv_cov0[1,1]<-1.0E-6
 Inv_cov0[2,2]<-1.0E-6
 Inv_cov0[2,1]<-Inv_cov0[1,2]
 Inv_cov0[1,2]<-0

 Inv_cov[1:2,1:2]~dwish(R[1:2,1:2], 2)
 R[1,1]<-1

A SAS Interface for WinBUGS 16

 R[2,2]<-1
 R[2,1]<-R[1,2]
 R[1,2]<-0

 Inv_sig2_e~dgamma(.001,.001)

 #Transform of the parameters
 MuL<-Mu[1]
 MuS<-Mu[2]
 Cov[1:2,1:2]<-inverse(Inv_cov[1:2,1:2])
 Sig2_L<-Cov[1,1]
 Sig2_S<-Cov[2,2]
 rho<-Cov[1,2]/sqrt(Cov[1,1]*Cov[2,2])
 Sig2_e<-1/Inv_sig2_e
}
;

/*end of the model scripts*/
RUN;

DATA _NULL_;
 SET model;
 FILE 'C:\SASWinBUGS\GrowthModel.txt’;
 PUT model;
RUN;

Since the level and slope are bivariate normally distributed, we need to specify a

bivariate normal distribution for them which is dmnorm in WinBUGS. The bivariate

normal distribution has two augments: mean vector and covariance matrix. In WinBUGS,

the second augment for dmnorm is the precision which is the inverse of the covariance

matrix. In WinBUGS, this bivariate distribution was expressed as

LS[i,1:2]~dmnorm(Mu[1:2], Inv_cov[1:2,1:2]) ,

where LS[i,1:2] is a 2×1 vector with two elements LS[i,1] and LS[i,2] ;

LS[i,1] is the level and LS[i,2] is the slope for individual i; Mu[1:2] is a 2×1

mean vector; and Inv_cov[1:2,1:2] is the inverse of the covariance matrix of the

initial level and slope. Since we had N=1000 individuals, we used a for (i in 1:N){…}

loop to repeat this specification for each individual. The observed variable y had a

A SAS Interface for WinBUGS 17

univariate normal distribution which was expressed as

y[i,t]~dnorm(MuY[i,t], Inv_sig2_e) .

Because each individual had an observation from occasion 1 to T=5, we used a second

loop for (t in 1:T) nested in the first one to represent this.

For the linear growth model, there were 6 parameters, Mu[1,2] ,

Inv_cov[1:2,1:2] , and Inv_sig2_e . We gave the mean vector Mu[1,2] a

bivariate normal distribution prior. For the precision matrix (Inv_cov[1:2,1:2]), a

Wishart distribution prior was used since it is the multivariate generalization of the

Gamma distribution. For the precision of y , a Gamma distribution prior was used.

By running the codes in CODE 9, the WinBUGS scripts for the growth curve model

were saved into a file called ‘GrowthModel.txt ’.

In this example, we used the N×T (1000×5) array data y[i,t] . Using the scripts in

CODE 10, the SAS data set Sim_LinGM was converted to WinBUGS array data using

macro _sexport and saved into a file called GrowthData.txt . All the starting

values were put together in a list and saved in the file “InitValues.txt ”. Note

that this set of starting values included all three types of data.

CODE 10. Data transformation and starting values for the
linear growth curve model

%_sexport(data=Sim_LinGM,
file ='C:\SASWinBUGS\GrowthData.txt',
var =y1-y5);

DATA _NULL_;
FILE "C:\SASWinBUGS\InitValues.txt";
PUT "list(Mu=c(0,0), Inv_cov= structure(.Data =

c(1,0,0,1),.Dim=c(2,2)), Inv_sig2_e=1) ";

The batch scripts and the .bat file for this linear growth curve model were very

similar to those for the regression model and we did not repeat them here. The complete

A SAS Interface for WinBUGS 18

SAS codes for this model are available by request. After running the complete SAS codes,

all parameter estimates from WinBUGS along with those from SAS MIXED are

summarized in Table 2. From Table 2, the parameter estimates from WinBUGS were very

close to the population values. Furthermore, the parameter estimates from WinBUGS and

SAS MIXED were nearly identical, which demonstrates that Bayesian method estimation

provides the same level of accuracy as MLE when non-informative priors are used.

--------- Insert Table 2 about here ----------------

Example 3. Monte Carlo Simulation of a Confirmatory Factor Model

 Bayesian methods have been mainly used as an alternative to MLE or to estimate

complex models which usually cannot be easily estimated with MLE. Simulation studies

are necessary when evaluating new or complex models. WinBUGS is not very flexible

for simulation studies because it can only run a single model or a single data set at one

time. However, SAS can be sued to iteratively implement the simulation procedure. To

demonstrate how to use SAS to iteratively run WinBUGS, we use a confirmatory factor

model with one latent factor and four observed variables. A path diagram with the

population parameter values is plotted in Figure 3. We generated 100 sets of data from the

population models and parameter estimates were obtained for each data set using

WinBUGS. We compared the mean of the parameter estimates from all 100 sets of data

with the population values.

--------------- Insert Figure 3 about here-----------------

 For the simulation study, the model specification, starting values, and script file to

run WinBUGS are the same for each data set. The following codes in CODE 11 can be

used to set up those for the confirmatory factor model. In this example, a new WinBUGS

A SAS Interface for WinBUGS 19

command “stat() ” was used, which calculated the summary statistics for each

parameter inside WinBUGS.

CODE 11.Common scripts for the CFA simulation
TITLE “Model specification for the CFA”;
FILENAME model "C:\SASWinBUGS\cfamodel.txt";
DATA model;

INPUT model $80.;
CARDS;/*start the model*/
model{

for (i in 1:N){
 for (t in 1:T){
 y[i,t]~dnorm(muy[i,t],Inv_sig2[t])
 muy[i,t]<-fload[t]*fscore[i]

}
fscore[i]~dnorm(0, 1)
}
for (t in 1:T){

fload[t]~dnorm(0, 1.0E-6)I(0,)
Inv_sig2[t]~dgamma(0.001, .001)
Para[t]<-fload[t]
Para[t+4]<-1/Inv_sig2[t]

}
}
;

RUN;
DATA _NULL_;
 SET model;
 FILE model;
 PUT model;
RUN;

TITLE “Starting values for CFA”;
DATA _NULL_;

FILE "C:\SASWinBUGS\cfaini.txt";
PUT "list(fload=c(.5,.5,.5,.5), Inv_sig2=c(1,1,1,1))";

RUN;

TITLE “Batch scripts to run WinBUGS”;
FILENAME runcfa 'c:\program files\winbugs14\runcfa. txt';
DATA _NULL_;
 FILE runcfa;
 PUT@1 "display('log')";
 PUT@1 "check('C:/SASWinBUGS/cfamodel.txt')" ;
 PUT@1 "data('C:/SASWinBUGS/cfadata.txt')";
 PUT@1 "compile(1)";

A SAS Interface for WinBUGS 20

 PUT@1 "inits(1, 'C:/SASWinBUGS/cfaini.txt')";
 PUT@1 "gen.inits()";
 PUT@1 "update(2000)";
 PUT@1 "set(Para)";
 PUT@1 "update(3000)";
 PUT@1 "stats(*)";
 PUT@1 "save('C:/SASWinBUGS/cfalog.txt')";
 PUT@1 "quit()";
RUN;

DATA _NULL_;

FILE "C:\SASWinBUGS\runcfa.bat";
PUT '"C:\program files\WinBUGS14\WinBUGS14.exe" /PA R

runcfa.txt';
PUT 'exit';

RUN;

 For the Monte Carlo simulation study, each data set generated from the population

model was different and the parameter estimates from each data set generally were likely

to be somewhat different. Thus, we need to generate multiple data sets and estimate the

parameters for each data set iteratively. To do this, we used a macro that can be called

iteratively. Each time this macro was called, it generated a data set and obtained

parameter estimates from the model. The macro simcfa(n) for the CFA is given in

CODE 12. In the first part, a data set was generated from the population model. Then this

data set was saved into a file “cfadata.txt ” in WinBUGS data format. In the next

part, WinBUGS was run in X window to implement the Bayesian analysis based on this

generated data set. Finally, the log file was read into SAS to obtain the parameter

estimates. Notice that we did not save the CODA files and calculate the parameter

estimates in SAS. Instead, we read in the parameter estimates from the log file directly. In

this case, we need to make sure the generated sequences converged. In the current

example, we first ran one set of data and found that the generated sequences for all

parameters converged after 100 iterations. Although we may use 100 as the burn-in data

A SAS Interface for WinBUGS 21

points, we used 2000 to ensure the convergence for all the other data sets.

CODE 12. The macro for data generation and model estimaiton
%MACRO simcfa(n);
TITLE 'Generate the Data';
DATA Sim_CFA;
*setting the true parameter values;
fload=.8; sig2=.36;
* setting statistical parameters;
 N = 200; seed = 20060802+&n; M=4;
* need to setup arrays so we can have more variable s;
ARRAY y_score{4} y1-y4;
ARRAY e_score{4} y1-y4;

* generating raw data;
 DO _N_ = 1 TO N;
* now the indicator variables ;
 f_score=RANNOR(seed);
 DO t = 1 TO M;
 y_score{t} = fload*f_score
+sqrt(sig2)*RANNOR(seed);
 END;
 KEEP y1-y4;
 OUTPUT;
 END;
RUN;

/*Data*/
%_sexport(data=Sim_CFA, file='C:\SASWinBUGS\cfadata .txt',
var=y1-y4);

/*Run WinBUGS*/
DATA _NULL_;

X "C:\SASWinBUGS\runcfa.bat";
RUN;
QUIT;

/*Read in the log file to view the parameters*/
TITLE 'Simulation '&n;
DATA log;

INFILE "C:\SASWinBUGS\cfalog.txt" TRUNCOVER ;
INPUT log $80.;
log=translate(log," ","09"x);
IF (SUBSTR(log, 2, 4) ne 'Para') then delete;

RUN;

A SAS Interface for WinBUGS 22

PROC PRINT DATA=log;
RUN;
%MEND;

To run the macro above 100 times to generate 100 data sets and obtain 100 sets of

parameters, we configured another macro runsimcfa which is given in CODE 13.

CODE 13.The macro for running simulation iteratively
%MACRO runsimcfa;
 %LET n=1;
 %DO %WHILE(&n <= 100);
 %simcfa(&n);
 %LET n=%EVAL(&n+1);
 %END;
%MEND runsimcfa;
*run the macro
%runsimcfa;

After running the codes in CODE 13, the 100 sets of parameter estimates were

printed in the SAS output window. Usually, for each parameter, we need to calculate 3

numbers: the mean and the standard deviation (s.d.) of each parameter estimate, and the

mean of the associated standard errors (MSE) from the 100 sets of data. All of these can

be calculated using the SAS codes in CODE 14.

CODE 14. Data process of the simulation results
/*Save the output and log into files*/
DM OUTPUT 'FILE "C:\SASWinBUGS\allresults.txt"';
DM LOG 'FILE "C:\SASWinBUGS\allresults.log"';

TITLE “Analyze the Monte Carlo simulation results”;
DATA temp;

INFILE "C:\SASWinBUGS\allresults.txt" TRUNCOVER ;
INPUT all $90.;
IF (SUBSTR(all, 7, 4) NE 'Para') THEN DELETE;
FILE "C:\SASWinBUGS\temp.txt";
PUT all;

RUN;

DATA temp;
INFILE "C:\SASWinBUGS\temp.txt";
INPUT parid parname $ parest parsd MCerror p25 medi an p975
start sample;

A SAS Interface for WinBUGS 23

id=int((_N_-.1)/8)+1;
parest=abs(parest);
RUN;

/*Parameter Estimates*/
PROC TRANSPOSE DATA=temp OUT=parest PREFIX=par;
 BY id ;
 ID parid;
 VAR parest;
RUN;
/*Calculate the mean and s.d. of the parameters*/
PROC MEANS DATA=parest;
VAR par1-par8;
RUN;

/*SDs*/
PROC TRANSPOSE DATA=temp OUT=parsd PREFIX=sd;
 BY id ;
 ID parid;
 VAR parsd;
RUN;
/*Calculate the mean of the s.e.*/
PROC MEANS DATA=parsd;
VAR sd1-sd8;
RUN;

 After running CODE 11 through CODE 14, we can obtain the results in Table 3. The

means of the parameter estimates are very close to the population parameter values to

generate the data. Furthermore, the standard deviations were the same as the MSE

indicating the estimated standard errors were consistent with the true standard errors.

-----------Insert Table 3 about here-----------------

Discussion

WinBUGS is a powerful tool for implementing Bayesian analysis and estimating

complex models (Rupp et al., 2004) and SAS is widely used statistical software in

academic and research institutes. Their combination will advance the application of both

Bayesian methods and sophisticated models in social and behavioral research. The whole

procedure we presented and the SAS codes we provided can conveniently interface SAS

A SAS Interface for WinBUGS 24

and WinBUGS. This procedure is beneficial to many researchers including advanced

Bayesian users who already have rich experiences in Bayesian analysis and researchers

who are familiar with SAS but yet to find out the utility of Bayesian approach.

The procedure in Figure 1 was illustrated using a multiple regression model, a linear

growth curve model, and a confirmatory factor model. In the first example, we

demonstrated how to apply the proposed interface between SAS and WinBUGS using a

multiple regression model. The second example showed how to specify a more complex

model and the last example focused on the iterative use of WinBUGS for Monte Carlo

simulation studies. All three examples can be replicated and modified to accommodate

new models.

Two concerns about the Bayesian analysis include the computational time and

programming intensity. However, with the availability of powerful computing facilities,

the computing time is not a big problem any more. For example, the multiple regression

model took about 10 seconds to finish the estimation procedure on an “out-of-dated”

laptop (Celeron 1.7 and 512M RAM). The growth curve model with N=1000 and T=5

took about 120 seconds. For the confirmatory factor model example, it took only 30

minutes to finish the whole simulation study (with 100 sets of data). Furthermore,

although the different models need different model specification, the example WinBUGS

codes for many models can be obtained freely. By simply replacing the model

specification part in our example and with a few other minor changes, a new data set can

be analyzed by a new model.

For the aim of illustration, we only used three relatively simple models as examples.

However, the same procedure allows and shows advantages when estimating more

A SAS Interface for WinBUGS 25

complex models which cannot be analyzed in SAS easily, such as the change point

models (McArdle & Wang, 2007; Wang & McArdle, under review), dynamic item

response models (Ram et al., 2005) and categorical dynamic factor models (Zhang &

Nesselroade, 2007). Complexity of models also made the difference of computation time

less noticeable between Bayesian and MLE methods. However, the precision of the

parameter estimates is even better for Bayesian methods.

To close the discussion, we would like to evaluate the proposed procedure based on

our practical experience. First, this procedure is very useful for analyzing data using the

similar model. For example, when we analyzed the cognitive data using the same linear

growth curve model, we only need to import the data into SAS and run the exact same

procedure without changing anything except the name of the data set. Second, this

procedure is especially useful for simulation studies. It is well known that WinBUGS is

not flexible for simulation studies because it can run only single replication at one time.

Our procedure can be viewed as a useful supplement to WinBUGS. This procedure has

been proved useful in Bowels (2006), Zhang, Hamaker, and Nesselroade (in press), and

Zhang and Nesselroade (2007) for different simulation studies.

A SAS Interface for WinBUGS 26

References

Bartholomew, D. J. (1981). Posterior analysis of the factor model. British Journal of

Mathematical and Statistical Psychology, 34, 93–99.

Bowels, R. P. (2006). Item response models for intratask change to examine the impacts

of proactive interference on the aging of working memory span. Doctoral

dissertation. Department of Psychology, University of Virginia.

Chang, H.-H. (1996). The asymptotic posterior normality of the latent trait for

polytomous IRT models. Psychometrika, 61, 445–463.

Cowles, M. K. (2004). Review of WinBUGS 1.4. The American Statistician, 58 (4),

330-336.

Congton, P. (2001). Bayesian statistical modeling. New York: Wiley.

Congton, P. (2003). Applied Bayesian modeling. New York: Wiley.

Demidenko, E. (2004). Mixed models: Theory and applications. New York: Wiley.

Edwards,W., Lindman, H., & Savage, L. J. (1963). Bayesian statistical inference for

psychological research. Psychological Review, 70, 193–242.

Eaves, L. & Erkanli, A. (2003). Markov chain Monte Carlo approaches to analysis of

genetic and environmental components of human developmental change and G X E

interaction. Behavior Genetics, 33, 279-299

Fox, J.-P., & Glas, C. A. W. (2001). Bayesian estimation of a multilevel IRT model using

Gibbs sampling. Psychometrika, 66, 271–288.

Laird, N. M., & Ware, J. H. (1982). Random-effects models for longitudinal data.

Biometrics, 38 (4), 963-974.

Lee, S. (1981). A Bayesian approach to confirmatory factor analysis. Psychometrika, 46,

A SAS Interface for WinBUGS 27

153–160.

Lee, M. D. (2004). A Bayesian analysis of retention functions. Journal of Mathematical

Psychology, 48(5), 310-321.

Lee, M. D., & Wagenmakers, E. (2005). Bayesian statistical inference in psychology:

Comment on Trafimow (2003). Psychological Review, 112, 662–668.

McArdle, J. J., & Nesselroade, J. R. (2003). Growth curve analysis in contemporary

psychological research. In J. Schinka & W. Velicer (Eds.), Comprehensive handbook

of psychology: Research methods in psychology (Vol. 2, p. 447-480). New York:

Wiley.

McArdle, J. J. & Wang, L. (2007). Modeling age-based turning points in longitudinal

Life-span growth curves of cognition. In P. Cohen (Ed.), Turning points research,

Mahwah: Erlbaum

Meredith, W. & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55, 107-122.

Myung, I. J., & Pitt, M. A. (1997). Applying Occam’s razor in modeling cognition: A

Bayesian approach. Psychonomic Bulletin & Review, 4(1), 79–95.

Ram, N., Chow, S., Bowles, R.P., Wang, L., Grimm, K., Fujita, F., & Nesselroade, J.R.

(2005). Examining interindividual differences in cyclicity of pleasant and unpleasant

affect using spectral analysis and item response modeling. Psychometrika, 70(4),

773-790.

Rupp, A. A., Dey, D. K., & Zumbo, B. D. (2004). To Bayes or not to Bayes, from

whether to when: Applications of Bayesian methodology to modeling. Structural

Equation Modeling: A Multidisciplinary Journal, 11(3), 424-451.

Scheines, R., Hoijtink, H., & Boomsma, A. (1999). Bayesian estimation and testing of

A SAS Interface for WinBUGS 28

structural equation models. Psychometrika, 64, 37–52.

Seltzer, M. H., Wong, W. H., & Bryk, A. S. (1996). Bayesian analysis in applications of

hierarchical models: Issues and methods. Journal of Educational and Behavioral

Statistics, 21, 131–167.

Seltzer, M., & Choi, K. (2003). Sensitivity analysis for hierarchical models:

Downweighting and identifying extreme cases using the t distribution. In S. P. Reise

& N. Duan (eds). Multilevel modeling: Methodological advances, issues, and

applications (p25-52). Mahwah, NJ: Lawrence Erlbaum Associates.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Linde, A. v. d. (2002). Bayesian

measures of model complexity and fit. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 64 (4), 583-639.

Spiegelhalter, D. J., Thomas, A., Best, N., & Lunn, D. (2003). WinBUGS Manual

Version 1.4. (MRC Biostatistics Unit, Institute of Public Health, Robinson Way,

Cambridge CB2 2SR, UK, http://www.mrc-bsu.cam.ac.uk/bugs)

Trafimow, D. (2003). Hypothesis testing and theory evaluation at the boundaries:

Surprising insights from Bayes’s theorem. Psychological Review, 110, 526–535.

Trafimow, D. (2005). The ubiquitous Laplacian assumption: Reply to Lee and

Wagenmakers (2005). Psychological Review, 112, 669–674.

Wang, L. & McArdle, J. J. (1st revision under review). Estimating unknown change

points by using Bayesian methods. Structural Equation Modeling.

Zhang, Z., Hamagami, F., Wang, L., Grimm, K. J., & Nesselroade, J. R. (2007). Bayesian

analysis of longitudinal data using growth curve models. International Journal of

Behavioral Development 31(4), 374-383.

A SAS Interface for WinBUGS 29

Zhang, Z., Hamaker, E. L., & Nesselroade, J. R. (in press). Comparisons of four methods

for estimating dynamic factor models. Structural Equation Modeling.

Zhang, Z., & Nesselroade, J. R. (2007). Bayesian estimation of categorical dynamic

factor models. Multivariate Behavioral Research, 42(4), 729-756.

A SAS Interface for WinBUGS 30

Appendix

Appendix A. List of the programs or macros

1. SAS: http://www.sas.com

2. WinBUGS: http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml

3. R2WinBUGS by Sibylle Sturtz and Uwe Ligges:

http://cran.r-project.org/src/contrib/Descriptions/R2WinBUGS.html

4. SAS Macros by Rodney Sparapani: http://www.mcw.edu/pcor/bugs/

5. xl2bugs by Sanjog Misra: http://smisra.simon.rochester.edu/software.htm

6. BAUW by Zhiyong Zhang and Lijuan Wang: http://bauw.psychstat.org

7. Modified version of Rodney Sparapani’s SAS Macros: http://bauw.psychstat.org

A SAS Interface for WinBUGS 31

Table 1.

The parameter estimates for the regression model.

 True estimate s.e. CI

b0 1 0.99 0.064 (0.87, 1.12)

b1 2 2.04 0.065 (1.92, 2.17)

b2 3 3.01 0.064 (2.89, 3.14)

sig2_e 4 4.06 0.184 (3.71, 4.45)

Note. s.e.: standard error; CI: confidence interval.

A SAS Interface for WinBUGS 32

Table 2.

Parameter estimates for the linear growth model

 WinBUGS SAS MIXED

True Value Estimate s.e. Estimate s.e.

µL 10 10.12 0.071 10.12 0.071

µS 5 5.01 0.033 5.01 0.034

σL
2 4 3.96 0.227 3.96 0.226

σS
2 1 1.04 0.051 1.04 0.051

σe
2 1 0.97 0.025 0.97 0.025

ρLS 0.5 0.45 0.034 0.44 0.038

Note. s.e.: standard error.

A SAS Interface for WinBUGS 33

Table 3.

Results from the confirmatory factor analysis

Parameters TRUE Mean s.d. MSE

Factor
Loadings

0.8 0.81 0.06 0.06

0.8 0.82 0.06 0.06

0.8 0.80 0.06 0.06

0.8 0.81 0.06 0.06

Uniqueness
Variances

0.36 0.35 0.04 0.05

0.36 0.37 0.05 0.05

0.36 0.38 0.05 0.05

0.36 0.36 0.05 0.05

Note. Mean: the average value of the parameter estimates from 100 sets of simulated data.

s.d.: the standard deviation of the parameter estimates from 100 sets of simulated data.

MSE: the average standard errors of the parameter estimates from 100 sets of simulated

data.

A SAS Interface for WinBUGS 34

 Figure Captions

Figure 1. The flow chart to run WinBUGS inside SAS

Figure 2. History plots and Histogram plots of parameters from the regression model

Figure 3. Path diagram for the population confirmatory factor model

A SAS Interface for WinBUGS 35

Figure 1. The flow chart to run WinBUGS inside SAS

Step 1: Install SAS and
WinBUGS

Step 2: Setup SAS
environment for WinBUGS

Step 1-1: Install SAS

Step 1-2: Install
WinBUGS

Step 3: Express the model in
WinBUGS language

Step 4: Configure a SAS
program to run WinBUGS

Step 4-1: Create a
WinBUGS data file

Step 4-2: Create a
starting values file

Step 4-3: Create a script
file to run WinBUGS

Step 4-4: Run WinBUGS
and debug errors

Step 4-5: Read CODA
files into SAS and

Implement statistical
inference

A SAS Interface for WinBUGS 36

b0

0. 76

0. 78

0. 80

0. 82

0. 84

0. 86

0. 88

0. 90

0. 92

0. 94

0. 96

0. 98

1. 00

1. 02

1. 04

1. 06

1. 08

1. 10

1. 12

1. 14

1. 16

1. 18

1. 20

1. 22

N

0 1000 2000 3000 4000 5000

0. 73 0. 77 0. 81 0. 85 0. 89 0. 93 0. 97 1. 01 1. 05 1. 09 1. 13 1. 17 1. 21 1. 25

0

2

4

6

8

10

12

14

P
e
r
c
e
n
t

b0

b1

1. 78

1. 80

1. 82

1. 84

1. 86

1. 88

1. 90

1. 92

1. 94

1. 96

1. 98

2. 00

2. 02

2. 04

2. 06

2. 08

2. 10

2. 12

2. 14

2. 16

2. 18

2. 20

2. 22

2. 24

2. 26

2. 28

2. 30

N

0 1000 2000 3000 4000 5000

1. 76 1. 8 1. 84 1. 88 1. 92 1. 96 2 2. 04 2. 08 2. 12 2. 16 2. 2 2. 24 2. 28 2. 32

0

2

4

6

8

10

12

14

P
e
r
c
e
n
t

b1

b2

2. 78

2. 80

2. 82

2. 84

2. 86

2. 88

2. 90

2. 92

2. 94

2. 96

2. 98

3. 00

3. 02

3. 04

3. 06

3. 08

3. 10

3. 12

3. 14

3. 16

3. 18

3. 20

3. 22

3. 24

N

0 1000 2000 3000 4000 5000

2. 75 2. 79 2. 83 2. 87 2. 91 2. 95 2. 99 3. 03 3. 07 3. 11 3. 15 3. 19 3. 23 3. 27

0

2

4

6

8

10

12

14

P
e
r
c
e
n
t

b2

si g2_e

3. 4

3. 5

3. 6

3. 7

3. 8

3. 9

4. 0

4. 1

4. 2

4. 3

4. 4

4. 5

4. 6

4. 7

4. 8

4. 9

N

0 1000 2000 3000 4000 5000

3. 36 3. 48 3. 6 3. 72 3. 84 3. 96 4. 08 4. 2 4. 32 4. 44 4. 56 4. 68 4. 8 4. 92

0

2

4

6

8

10

12

14

P
e
r
c
e
n
t

si g2_e

Figure 2. History plots and Histogram plots of parameters from the regression model

A SAS Interface for WinBUGS 37

Figure 3. Path diagram for the population confirmatory factor model

